Lesson Notes
Grade 12
First Term
Second Term
Third Term
Grade 13
Second Term
Grade
13
Lesson Overview
Unit 6 explains electric charges, electric forces, electric fields, electric potential, electric flux, Gauss’s law, and capacitors. These form the foundation of all electrical and electronic systems.
1. Core Concepts (Short Notes)
6.1 Coulomb’s Law
Force between two point charges:F = (1 / 4πϵ) × (q₁q₂ / r²)
Directly proportional to product of charges.
Inversely proportional to square of distance.
Acts along the line joining charges.
6.2 Electric Field (E)
Region where charge experiences a force.
E = F / q
Due to point charge: E = (1 / 4πϵ) × (Q / r²).
Direction: away from +Q, toward –Q.
6.3 Electric Potential (V)
Work done per unit charge to bring a charge from infinity.
V = (1 / 4πϵ) × (Q / r).
Potential difference (V = W/q).
Unit: volt (V).
6.4 Electric Potential Energy (U)
U = qV.
For two charges: U = (1 / 4πϵ) × (q₁q₂ / r).
6.5 Electric Flux (Φₑ) & Gauss’s Law
Electric flux: Φ = EA cosθ.
Gauss’s Law:Φ = Q / ϵ.
Used to calculate E around symmetric charge distributions.
6.6 Capacitors
Capacitance (C): ability to store charge.
C = Q / V.
Parallel plate capacitor:C = ϵA / d.
Energy stored:U = ½CV² = ½QV = ½Q²/C.
2. Detailed Notes for Each Section
6.1 Coulomb’s Law
Expression:
F = (1 / 4πϵ₀) × (q₁q₂ / r²).
Permittivity (ϵ)
ϵ₀: permittivity of free space.
ϵ = ϵ₀ϵᵣ (ϵᵣ = relative permittivity).
Vector Form:
→F = (1 / 4πϵ) × (q₁q₂ / r²) r̂.
6.2 Electric Field
Definition
E = F/q.
Due to a point charge:
E = (1 / 4πϵ) × (Q / r²).
Electric Field Lines
Properties:
Start on positive, end on negative.
Never intersect.
Density shows strength.
Common Field Patterns:
Isolated charge.
Dipole.
Parallel plates.
6.3 Electric Potential (V)
Definition
V = W/q.
Expression for a point charge:
V = (1 / 4πϵ) × (Q / r).
Potential Difference & Work Done
W = Vq.
Equipotential Surfaces
Perpendicular to electric field lines.
No work done moving along an equipotential.
6.4 Electric Potential Energy
Formula:
U = (1 / 4πϵ) × (q₁q₂ / r).
Potential Gradient:
E = – dV/dr.
6.5 Electric Flux & Gauss’s Law
Flux:
Φ = EA cosθ.
Gauss’s Law:
Φ = Q / ϵ.
Applications:
Spherical shell:
Inside: E = 0.
Outside: E = (1 / 4πϵ) × (Q / r²).
Infinite sheet:E = σ / (2ϵ).
Infinite line of charge:E = λ / (2πϵr).
6.6 Capacitors
Definition:
C = Q/V.
Parallel Plate Capacitor:
C = ϵA/d.
Effect of Dielectric:
C increases → C = kϵ₀A/d.
Combination of Capacitors:
Parallel: Cₑ = C₁ + C₂ + ...
Series: 1/Cₑ = 1/C₁ + 1/C₂ + ...
Energy Stored:
U = ½CV².U = ½Q²/C.U = ½QV.
3. Formula Summary (Unit 6)
F = (1 / 4πϵ) × (q₁q₂ / r²)
E = F/q
E = (1 / 4πϵ) × (Q / r²)
V = (1 / 4πϵ) × (Q / r)
U = qV
Φ = EA cosθ
Q = ϵΦ
C = Q/V
C = ϵA/d
U = ½CV²
4. Common Mistakes to Avoid
Forgetting permittivity (ϵ) in equations.
Using radius (r) incorrectly in Gauss’s law problems.
Mixing series and parallel formulas.
Confusing potential (V) with potential energy (U).
Forgetting that electric field lines never cross.
5. Exam Tips
Identify symmetry before applying Gauss’s Law.
Show field-line diagrams clearly.
Always convert cm → m in capacitor questions.
Mention assumptions (e.g., uniform field between plates).
Use potential gradient for tough E-field problems.
6. Quick Revision Table
Concept | Key Idea |
Coulomb’s Law | F ∝ q₁q₂/r² |
Electric Field | E = F/q; E due to point charge |
Electric Potential | V = kQ/r |
Potential Energy | U = qV |
Electric Flux | Φ = EAcosθ |
Gauss’s Law | Φ = Q/ϵ |
Capacitance | C = ϵA/d |
වියාචනය (Disclaimer)
Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.
කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්රී ලංකා අධ්යාපන අමාත්යාංශයේ, අධ්යාපන ප්රකාශන දෙපාර්තමේන්තුව විසින් ප්රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.
ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්රකාශනයි.
