top of page

Revisions

d-Block Elements (Transition Metals)

Grade

12

Level 1 – Basic Recall (1–10)

  1. What are transition metals?

  2. Give two examples of transition metals.

  3. What is a ligand?

  4. Define a complex ion.

  5. What property of transition metals makes them form colored compounds?

  6. State the common oxidation state of iron.

  7. Why are transition metals good catalysts?

  8. What is a d-subshell?

  9. Name one coloured ion of manganese.

  10. Name one example of a coordination compound.



Level 2 – Understanding (11–20)

  1. Explain why transition metals have variable oxidation states.

  2. Why do transition metal ions show magnetic properties?

  3. Explain why Zn, Cd, and Hg are not considered true transition metals.

  4. Compare aqua complexes and ammonia complexes of Cu²⁺.

  5. Explain crystal field splitting in octahedral complexes.

  6. Why does [Cu(H₂O)₆]²⁺ appear blue?

  7. Describe ligand exchange reactions.

  8. Explain the difference between inner and outer sphere complexes.

  9. Describe how Fe catalyses the Haber process.

  10. Explain why MnO₄⁻ is a strong oxidising agent.



Level 3 – Application (21–30)

  1. Predict colour changes when NH₃ is added to Cu²⁺ solution.

  2. Explain why Fe²⁺ is easily oxidised to Fe³⁺.

  3. Compare magnetic properties of high-spin vs low-spin complexes.

  4. Write oxidation states of Mn in MnO₂ and MnO₄⁻.

  5. Predict the shape of [Ni(CN)₄]²⁻.

  6. Explain ligand field strength using the spectrochemical series.

  7. Predict the colour of Cr³⁺ vs Cr₂O₇²⁻.

  8. Compare oxidation numbers of chromium in its various oxides.

  9. Explain catalytic breakdown of H₂O₂ by MnO₂.

  10. Interpret the role of transition metals in biological systems (e.g., hemoglobin).



Level 4 – Analysis (31–40)

  1. Analyse why transition metals form stable complexes.

  2. Explain how d-orbital splitting leads to absorption of visible light.

  3. Compare redox behaviour of Fe²⁺/Fe³⁺ and Mn²⁺/MnO₄⁻.

  4. Evaluate the stability of complexes using chelation.

  5. Explain Jahn–Teller distortion in octahedral complexes.

  6. Analyse ligand substitution kinetics in Co³⁺ vs Cu²⁺ complexes.

  7. Discuss π-backbonding in transition metal carbonyls.

  8. Predict magnetic behaviour using electron configuration.

  9. Explain why some complexes are tetrahedral and others square planar.

  10. Analyse the relationship between metal oxidation state and colour intensity.



Level 5 – Exam/Challenge (41–50)

  1. Explain splitting patterns for tetrahedral vs octahedral complexes.

  2. Predict colours of complexes using crystal field theory.

  3. Use Tanabe–Sugano diagrams to analyse spin transitions (if applicable).

  4. Evaluate catalytic activity based on variable oxidation states.

  5. Compare ligand substitution rates in transition metal complexes.

  6. Explain how transition metals stabilize unusual oxidation states.

  7. Predict the effects of strong-field ligands on spin states.

  8. Analyse redox titration curves involving MnO₄⁻.

  9. Discuss why transition metals are essential micronutrients in biology.

  10. Evaluate environmental impacts of heavy metal ions (Cr⁶⁺, Pb²⁺, Hg²⁺) using their chemistry.

වියාචනය (Disclaimer)

Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්‍යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.

කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්‍යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්‍රී ලංකා අධ්‍යාපන අමාත්‍යාංශයේ, අධ්‍යාපන ප්‍රකාශන දෙපාර්තමේන්තුව විසින් ප්‍රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.

ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්‍රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්‍රකාශනයි.

bottom of page