top of page

Revisions

Electromagnetic Radiation

Grade

12

Level 1 — Basic Recall (1–10)

  1. Define electromagnetic radiation.

  2. State the speed of light in vacuum.

  3. Define wavelength.

  4. Define frequency.

  5. What is a photon?

  6. List any four electromagnetic waves.

  7. Write the formula c = λν.

  8. Which EM wave has the longest wavelength?

  9. Which EM wave has the highest frequency?

  10. What is the unit of frequency?


Level 2 — Understanding (11–20)

  1. Explain why blue light has higher energy than red light.

  2. Arrange these by increasing frequency: IR, UV, radio.

  3. Describe the wave–particle duality of light.

  4. What is Planck’s constant?

  5. Explain why gamma rays are dangerous.

  6. Why do microwaves heat food?

  7. Compare X-rays and gamma rays.

  8. What happens to wavelength if frequency increases?

  9. Explain how photons interact with electrons.

  10. Describe how UV causes skin damage chemically.


Level 3 — Application (21–30)

  1. Calculate the frequency of a wave with λ = 4 × 10⁻⁷ m.

  2. Calculate photon energy for ν = 6 × 10¹⁴ Hz.

  3. Determine λ for a photon with energy 3 × 10⁻¹⁹ J.

  4. Explain why cell phones use microwaves instead of gamma rays.

  5. A laser emits light of λ = 532 nm. Convert this to frequency.

  6. Why do metallic surfaces emit electrons under UV but not visible light?

  7. Predict the energy of a photon with double the frequency.

  8. Why does radio communication use long wavelengths?

  9. Calculate the energy ratio of X-ray vs visible photon.

  10. Describe one medical use of EM radiation and why that wavelength is chosen.


Level 4 — Analysis (31–40)

  1. Analyse the relationship between energy, wavelength, and biological harm.

  2. Why does atmospheric ozone absorb UV but not IR?

  3. Compare the penetration ability of various EM waves based on energy.

  4. Explain why IR radiation increases molecular vibrations.

  5. Evaluate the evidence supporting the particle nature of light (photoelectric effect).

  6. Predict changes if the speed of EM waves was different.

  7. Explain how spectroscopy identifies chemical elements.

  8. Compare classical wave theory with quantum theory.

  9. Analyse the limits of classical physics in describing EM radiation.

  10. Discuss how EM radiation supports the concept of quantization.


Level 5 — Exam/Challenge (41–50)

  1. Derive the formula relating energy and wavelength (E = hc/λ).

  2. Explain the photoelectric effect using quantum ideas.

  3. Analyse how EM radiation causes ionization.

  4. Determine λ for a frequency of 8.3 × 10¹⁸ Hz and discuss its nature.

  5. Evaluate the safety concerns of prolonged exposure to microwaves.

  6. A photon ejects an electron with kinetic energy 4 × 10⁻¹⁹ J. Calculate photon frequency.

  7. Compare solar radiation peaks with Earth’s radiation emissions.

  8. Explain how EM spectra reveal star composition and temperature.

  9. Evaluate the limitations of the wave model of light.

  10. Describe the experimental evidence proving electrons have wave properties.

වියාචනය (Disclaimer)

Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්‍යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.

කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්‍යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්‍රී ලංකා අධ්‍යාපන අමාත්‍යාංශයේ, අධ්‍යාපන ප්‍රකාශන දෙපාර්තමේන්තුව විසින් ප්‍රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.

ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්‍රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්‍රකාශනයි.

bottom of page