Revisions
Grade 12
Second Term
Third Term
Grade 13
Electronic Energy Levels & Atomic Spectra
Grade
12
Level 1 — Basic Recall (1–10)
What is an energy level?
Define ground state.
Define excited state.
What is an emission spectrum?
What is an absorption spectrum?
Which hydrogen series appears in the visible region?
What is meant by quantized energy?
Name one instrument used to observe spectra.
State what happens when an electron absorbs energy.
What happens when an electron emits energy?
Level 2 — Understanding (11–20)
Why are emission spectra discontinuous?
Explain why each element has a unique spectrum.
Describe the difference between continuous and line spectra.
Why do excited electrons eventually fall back to lower levels?
Compare Balmer and Lyman series.
Explain why UV corresponds to higher energy transitions.
What determines the color of emitted light?
Why is hydrogen used to explain atomic structure?
Explain quantization using an analogy.
Draw a simple energy level diagram for hydrogen.
Level 3 — Application (21–30)
Explain why sodium lamps emit yellow light.
Predict whether a transition producing IR is high or low energy.
Use ΔE = hv to calculate energy released when ν = 5 × 10¹⁴ Hz.
Calculate wavelength emitted for transition energy 4 × 10⁻¹⁹ J.
Explain how firework colors arise from electron transitions.
Describe how flame tests identify metal ions.
Draw transitions for n=3 → n=2 and n=4 → n=2, comparing energies.
Predict the region (UV/visible/IR) for a transition from n=5 → n=1.
Calculate wavenumber from wavelength 500 nm.
Explain how astronomers use absorption spectra.
Level 4 — Analysis (31–40)
Analyse why electrons cannot exist between levels.
Compare the ability of the Bohr model and quantum model to explain spectra.
Explain fine structure in spectral lines.
Analyse how spin and magnetic quantum numbers affect spectra.
Why do heavier atoms produce more complex spectra?
Explain how electron shielding affects energy spacing.
Evaluate how ionization energy relates to energy levels.
Predict spectra changes if nuclear charge increases.
Compare hydrogen spectrum with helium+.
Explain limitations of the Rydberg formula.
Level 5 — Exam/Challenge (41–50)
Use Rydberg equation to calculate λ for n₂ = 4 to n₁ = 2.
Explain how spectra provide evidence for electron shells.
Evaluate Bohr’s model using spectral data.
Compare emission and absorption patterns for the same element.
Explain what happens to spectral lines at high temperatures.
Predict the effect of magnetic fields (Zeeman effect) on spectra.
Discuss the relationship between quantization and wavefunctions.
Calculate ΔE for hydrogen using known En formula.
Explain how spectra confirm the quantization of angular momentum.
Argue why spectroscopy is one of the strongest proofs of quantum theory.
වියාචනය (Disclaimer)
Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.
කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්රී ලංකා අධ්යාපන අමාත්යාංශයේ, අධ්යාපන ප්රකාශන දෙපාර්තමේන්තුව විසින් ප්රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.
ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්රකාශනයි.
