top of page

Lessons

Algebraic Inequalities

Grade

10

Term

3

Inequalities are used when we don't have an exact equality, but a relationship like "greater than" or "less than". This lesson covers solving algebraic inequalities and showing the solutions on a number line or as a shaded region on a coordinate plane.

Part A: Solving Linear Inequalities

1. Core Concept

Solving an inequality like 5x - 3 > 7 is almost identical to solving an equation like 5x - 3 = 7. You use inverse operations to isolate the variable. However, there is one critical rule you must never forget.

2. The Golden Rule of Inequalities

When you multiply or divide both sides of an inequality by a NEGATIVE number, you MUST FLIP the inequality sign.

  • > becomes <

  • < becomes >

  •  becomes

  •  becomes

Example:

  • Solve 10 - 2x ≥ 4

  • Subtract 10: -2x ≥ -6

  • Divide by -2 and FLIP the sign: x ≤ 3. (The  becomes )

3. Representing Solutions on a Number Line

This is a visual way to show the set of all possible answers.

  • Use an open circle (o) for < and > (endpoint is not included).

  • Use a closed circle (●) for  and  (endpoint is included).

  • Shade the part of the line that represents the solution.

Part B: Representing Inequalities on a Coordinate Plane

This extends the idea to two variables (x, y), where the solution is a whole region.

1. Core Concept

The solution to an inequality like y > 2x + 1 is the set of all coordinate points (x, y) that make the statement true. We show this by shading the correct side of the line.

2. The Method

  1. Draw the Boundary Line: First, pretend the inequality is an equation (e.g., for y > x, draw the line y = x).

    • Use a DASHED line for < and >. This shows the line itself is not part of the solution.

    • Use a SOLID line for  and . This shows the line is included in the solution.

  2. Shade the Correct Region:

    • For vertical lines (x > a): Shade to the right. For x < a, shade left.

    • For horizontal lines (y > b): Shade above. For y < b, shade below.

    • The Test Point Method (for diagonal lines): If you're not sure which side to shade for y > 2x + 1: a. Pick a simple test point that is NOT on the line, like (0, 0). b. Substitute it into the inequality: 0 > 2(0) + 1, which simplifies to 0 > 1. c. Is this statement true? No, it's false. d. Therefore, shade the side of the line that does NOT contain your test point (0, 0).

4. Exam Tips & Tricks

  • "Integer solutions": If a question asks for this, you must list the whole numbers that fit your solution.

    1. Question: "Find the integer solutions for x ≤ 3."

    2. Answer: {..., 0, 1, 2, 3}.

    3. Question: "Find the smallest integer solution for y > -3."

    4. Answer: -2.

  • Combining Regions: Exam questions often ask you to shade the region that satisfies multiple inequalities at once (e.g., x > 1, y < 4, and y > x). You do this by:

    1. Drawing all three boundary lines.

    2. Lightly shading the correct side for each one.

The final answer is the region where all the shadings overlap.

වියාචනය (Disclaimer)

Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්‍යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.

කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්‍යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්‍රී ලංකා අධ්‍යාපන අමාත්‍යාංශයේ, අධ්‍යාපන ප්‍රකාශන දෙපාර්තමේන්තුව විසින් ප්‍රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.

ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්‍රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්‍රකාශනයි.

bottom of page