top of page

Lessons

Frequency Distributions

Grade

10

Term

3

When dealing with a large amount of data, organizing it into a grouped frequency distribution makes it easier to analyze. This lesson focuses on how to calculate the mean (the average) from such a table, which gives us a single, representative value for the entire data set.

1. Core Concepts & Vocabulary

  • Grouped Frequency Distribution: A table that organizes data into groups called class intervals.

  • Class Interval: The range for each group (e.g., 10 - 20).

  • Frequency (f): The number of data values in each class interval.

  • Mid-value (x): The middle value of a class interval, used to represent all data in that group. Mid-value = (Lower Value + Upper Value) / 2.

  • Modal Class: The class interval with the highest frequency.

  • Mean: The average of the data. For grouped data, it's an estimate because we use mid-values.

2. Calculating the Mean: Two Methods

Method 1: The Direct Method (Best for smaller numbers)

Use this method when the mid-values are easy to work with.

Formula: Mean = Σfx / Σf

  • Σf is the total number of data points (sum of frequencies).

  • Σfx is the sum of the (mid-value × frequency) products.

Step-by-Step:

  1. Create a 4-column table: Class Interval, Mid-value (x), Frequency (f), fx.

  2. Calculate the mid-value (x) for each class.

  3. Calculate fx for each row by multiplying f × x.

  4. Find the totals: Add up the f column to get Σf. Add up the fx column to get Σfx.

  5. Divide: Mean = Σfx / Σf.

Method 2: The Assumed Mean Method (Best for large numbers)

This method simplifies calculations by letting you work with smaller numbers.

Formula: Mean = A + (Σfd / Σf)

  • A is the Assumed Mean (a mid-value you choose).

  • d is the Deviation (d = x - A).

  • Σfd is the sum of the (frequency × deviation) products.

Step-by-Step:

  1. Create a 5-column table: Class Interval, Mid-value (x), Frequency (f), Deviation (d), fd.

  2. Choose an Assumed Mean (A): Pick a mid-value from near the middle of the table (often from the modal class). This makes the deviation numbers smaller.

  3. Calculate the deviation (d) for each row: d = x - A. (Note: d will be 0 for the row you chose A from, and negative for rows above it).

  4. Calculate fd for each row by multiplying f × d.

  5. Find the totals: Add up the f column to get Σf. Add up the fd column (paying attention to negative signs) to get Σfd.

  6. Apply the formula: Mean = A + (Σfd / Σf).

3. Exam Tips & Tricks

  • When to Use Which Method?

    • If the mid-values are simple (e.g., 5, 15, 25), use the Direct Method.

    • If the mid-values are large and complex (e.g., 550, 650, 750), use the Assumed Mean Method to avoid difficult multiplication and potential errors.

  • The Σf Check: The first thing you should do is add up the f column. This Σf value must match the total number of items mentioned in the question (e.g., "data from 50 farmers"). If it doesn't, you've misread the table.

  • The Deviation Pattern Check: In the Assumed Mean method, if all your class intervals have the same width, the d column will have a constant pattern (e.g., -20, -10, 0, 10, 20). This is a great way to check if your mid-values are correct.

  • Keep Tables Neat: A well-organized table is crucial. Use a ruler to draw your columns and write numbers clearly to prevent calculation mistakes.

4. Important Points to Remember

  • The Mean is an Estimate: Because we use mid-values, the calculated mean is a very good estimate, not an exact value.

වියාචනය (Disclaimer)

Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්‍යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.

කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්‍යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්‍රී ලංකා අධ්‍යාපන අමාත්‍යාංශයේ, අධ්‍යාපන ප්‍රකාශන දෙපාර්තමේන්තුව විසින් ප්‍රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.

ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්‍රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්‍රකාශනයි.

bottom of page