top of page

Lessons

Real Numbers

Grade

11

Term

1

1. Core Concepts: Number Sets

Think of number sets like nested boxes. The smaller boxes fit inside the larger ones.

  • Natural Numbers (ℕ): Your counting numbers. {1, 2, 3, ...}

  • Integers (ℤ): All whole numbers, including zero and negatives. {..., -3, -2, -1, 0, 1, 2, 3, ...}

  • Rational Numbers (ℚ): Any number that can be written as a fraction p/q, where 'p' and 'q' are integers and 'q' is not zero.

    • This includes all integers (e.g., 5 = 5/1), terminating decimals (e.g., 0.5 = 1/2), and recurring decimals (e.g., 0.333... = 1/3).

  • Irrational Numbers (ℚ'): Numbers that cannot be written as a simple fraction. Their decimal form goes on forever without repeating.

    • Famous examples: π (pi), √2, √3, √5.

  • Real Numbers (ℝ): The biggest box. It contains all rational and irrational numbers.

Venn Diagram Summary: (This is a crucial visual to remember!)


2. Rational Decimals: Terminating vs. Recurring

This is a common exam question. Here's how to tell them apart without doing long division.

  1. Simplify the fraction first! (e.g., 6/30 simplifies to 1/5).

  2. Look at the prime factors of the denominator.

    • Terminating: If the prime factors are only 2s and/or 5s, the decimal will terminate (end).

      • Example: 3/8 -> Denominator is 8 = 2 x 2 x 2. (Only 2s). So, it terminates (0.375).

      • Example: 7/20 -> Denominator is 20 = 2 x 2 x 5. (Only 2s and 5s). So, it terminates (0.35).

    • Recurring: If the denominator has any prime factor other than 2 or 5 (like 3, 7, 11, etc.), the decimal will recur (repeat).

      • Example: 5/6 -> Denominator is 6 = 2 x 3. (Has a 3). So, it recurs (0.8333...).

3. Surds (කරණ / சேடு)

A surd is simply a root of a number that is irrational. For your exam, this mainly means the square root of a number that is not a perfect square (e.g., √20).


Key Skills for the Exam:

a) Simplifying Surds

Trick: Find the largest perfect square that is a factor of the number.

  • Example: Simplify √48

    1. Factors of 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.

    2. The largest perfect square factor is 16.

    3. Rewrite: √48 = √(16 x 3)

    4. Split: √16 x √3

    5. Simplify: 4√3


b) Adding and Subtracting Surds

Tip: Think of surds like algebraic terms. You can only add or subtract 'like' surds.

  • YES: 3√5 + 2√5 = 5√5 (Like 3x + 2x = 5x)

  • NO: 3√5 + 2√7 (Cannot be simplified)

Exam Trick: You often need to simplify the surds before you can add or subtract them.

  • Example: Simplify √20 - √5

    1. Simplify √20: √20 = √(4 x 5) = 2√5

    2. Now substitute back: 2√5 - √5

    3. Simplify: √5


c) Rationalizing the Denominator

This means getting the surd out of the denominator. Method: Multiply the top and bottom of the fraction by the surd in the denominator.

  • Example: Rationalize 5/√3

    1. Multiply top and bottom by √3: (5 x √3) / (√3 x √3)

    2. Since √3 x √3 = 3, the answer is (5√3) / 3.


Exam Tips & Common Mistakes

  • Mistake 1: Forgetting to simplify a fraction before checking if it's terminating or recurring. 3/6 is terminating because it's 1/2.

  • Mistake 2: Adding surds incorrectly. √2 + √3 is NOT √5. You cannot combine them.

  • Exam Tip: When a question asks for a calculation involving surds, simplify everything first. The final answer is often much simpler than the initial problem. For example, (√20)/2 - √5 simplifies to 2√5 / 2 - √5, which is √5 - √5 = 0.

  • Remember: Always show your simplification steps clearly. Marks are often awarded for the correct method, even if you make a small calculation error.

වියාචනය (Disclaimer)

Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්‍යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.

කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්‍යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්‍රී ලංකා අධ්‍යාපන අමාත්‍යාංශයේ, අධ්‍යාපන ප්‍රකාශන දෙපාර්තමේන්තුව විසින් ප්‍රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.

ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්‍රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්‍රකාශනයි.

bottom of page