top of page

Lessons

Binomial Expressions

Grade

11

Term

1

This lesson is about expanding the cube (the third power) of a binomial expression. While you learned how to expand squares like (x+y)², this takes it one step further. The key is to memorize two main formulas and apply them carefully.


1. The Two Core Formulas

a) The Cube of a Sum: (x + y)³

The formula for expanding the cube of a sum is: (x + y)³ = x³ + 3x²y + 3xy² + y³

Let's break that down:

  • : The cube of the first term.

  • + 3x²y: Three times the square of the first term multiplied by the second term.

  • + 3xy²: Three times the first term multiplied by the square of the second term.

  • + y³: The cube of the second term.

Notice the pattern of coefficients: 1, 3, 3, 1 Notice the powers of x go down (3, 2, 1, 0) and the powers of y go up (0, 1, 2, 3).

Example: Expand (a + 2)³

  • Here, x = a and y = 2.

  • a³ + 3(a²)(2) + 3(a)(2²) + 2³

  • = a³ + 6a² + 3(a)(4) + 8

  • = a³ + 6a² + 12a + 8

b) The Cube of a Difference: (x - y)³

The formula for expanding the cube of a difference is very similar, but the signs alternate. (x - y)³ = x³ - 3x²y + 3xy² - y³

Notice the pattern of signs: + , - , + , -

Example: Expand (y - 4)³

  • Here, x = y and y = 4.

  • y³ - 3(y²)(4) + 3(y)(4²) - 4³

  • = y³ - 12y² + 3(y)(16) - 64

  • = y³ - 12y² + 48y - 64


2. Important Applications and Variations

Expressions with Coefficients

Remember to apply the powers to the coefficients as well as the variables.

  • Example: Expand (2a - 5b)³

    • Here, x = 2a and y = 5b.

    • (2a)³ - 3(2a)²(5b) + 3(2a)(5b)² - (5b)³

    • = 8a³ - 3(4a²)(5b) + 3(2a)(25b²) - 125b³

    • = 8a³ - 60a²b + 150ab² - 125b³


Working Backwards

You might be given an expanded expression and asked to write it as a cube. Look for the pattern.

  • Example: Write p³ - 9p²q + 27pq² - 27q³ as a cube.

    1. The signs are + - + -, so it's a difference (x - y)³.

    2. The first term is , so x = p.

    3. The last term is -27q³, which is -(3q)³, so y = 3q.

    4. Check the middle terms: -3(p)²(3q) = -9p²q (Correct). And +3(p)(3q)² = +27pq² (Correct).

    5. The answer is (p - 3q)³.


Numerical Calculations

This is a common exam question to test your understanding.

  • Example: Evaluate 21³.

    1. Rewrite 21 as (20 + 1).

    2. Expand (20 + 1)³ using the formula.

    3. (20)³ + 3(20)²(1) + 3(20)(1)² + (1)³

    4. = 8000 + 3(400)(1) + 60(1) + 1

    5. = 8000 + 1200 + 60 + 1 = 9261


Exam Tips & Common Mistakes

  • Mistake 1: Sign Errors. The most common mistake with (x - y)³ is getting the signs wrong. Just remember the simple alternating pattern: plus, minus, plus, minus.

  • Mistake 2: Forgetting to Power the Numbers. In (2x)³, the result is 8x³, not 2x³. The power applies to everything inside the bracket.

  • Mistake 3: Mixing up the Squares. Students often mix up which term to square in the middle parts. Remember 3x²y (first term squared) and 3xy² (second term squared).

  • Exam Tip 1: Always write the general formula (x³ + 3x²y + ...) on your paper first, then substitute the specific terms from your problem. This helps prevent mistakes.

  • Exam Tip 2: If asked to find the volume of a cube with side length (a+5), the answer is simply the expansion of (a+5)³. Don't get confused by the geometry context.

වියාචනය (Disclaimer)

Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්‍යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.

කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්‍යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්‍රී ලංකා අධ්‍යාපන අමාත්‍යාංශයේ, අධ්‍යාපන ප්‍රකාශන දෙපාර්තමේන්තුව විසින් ප්‍රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.

ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්‍රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්‍රකාශනයි.

bottom of page