Lessons
Grade 10
Grade 11
Indices and Logarithms I
Grade
11
Term
1
This lesson builds on your Grade 10 knowledge by introducing fractional indices and a new logarithm law. Mastering these will make complex-looking problems easy to solve.
1. Core Concept: Fractional Indices (Rational Indices)
Fractional indices are just a different way of writing roots.
a) Basic Fractional Indices: The Root
The number on the bottom of the fraction is the root.
Formula: an1=na
Example: 2731=327=3
Example: 1621=16=4
b) Advanced Fractional Indices: Root and Power
Formula: anm=(na)m
How to solve:
Deal with the root first (the denominator n).
Then apply the power (the numerator m).
Example: Solve
Apply the root (cube root): 36427=43
Apply the power (square): (43)2=169
c) Negative Fractional Indices: Flip the Fraction!
A negative index means "find the reciprocal".
Formula: a−n=an1
How to solve:
Flip the base fraction to make the index positive.
Solve the fractional index as normal (root, then power).
Example: Solve (8116)−43
Flip the base: (1681)43
Apply the root (fourth root): 41681=23
Apply the power (cube): (23)3=827
2. Solving Equations with Indices
This is a guaranteed exam question type. The goal is always the same.
Method: Make the bases the same, then equate the powers. If am=an, then m=n.
Example: Solve 3×92x−1=27−x
Find a common base: The common base for 3, 9, and 27 is 3.
Rewrite all terms with the common base:
3=31
9=32
27=33
Substitute back into the equation: 31×(32)2x−1=(33)−x
Use index laws to simplify each side to a single power:
Law 1: (am)n=amn -> 31×32(2x−1)=33(−x) -> 31×34x−2=3−3x
Law 2: am×an=am+n -> 31+(4x−2)=3−3x -> 34x−1=3−3x
Equate the powers and solve: 4x−1=−3x 7x=1 x=71
3. The "Power Rule" of Logarithms
You know that log(A) + log(B) = log(AB) and log(A) - log(B) = log(A/B). The new rule lets you handle powers.
Formula: loga(mr)=rlogam
In simple terms: You can bring the power down to the front as a multiplier. This also works for roots!
Example (Power): log5(1254)=4log5(125)=4×3=12
Example (Root): log4(364)=log4(6431)=31log4(64)=31×3=1
4. Solving Equations with Logarithms
Method: Use the log laws to get a single log on each side, then drop the logs. If logaM=logaN, then M=N.
Example: Solve 2logb3+3logb2−logb72=21logbx
Use the Power Rule first to move all multipliers up into the powers: logb(32)+logb(23)−logb72=logb(x21)
Use addition/subtraction rules to combine the left side into one log term: logb(7232×23)=logb(x21) logb(729×8)=logb(x21) logb(7272)=logb(x21) logb(1)=logb(x21)
Drop the logs and solve the remaining equation: 1=x21 1=x x=1
Exam Tips & Common Mistakes
Mistake 1 (Indices): Rushing the calculation. Always do the root first, then the power. For 832, find 38 (which is 2) before you square it.
Mistake 2 (Logs): Confusing the log rules. log A + log B is log(AB), NOT log(A+B). You cannot simplify log(A+B).
Exam Tip (Indices): When solving equations, immediately look for the common prime base (usually 2, 3, or 5). Break down every number in the equation into that base.
Exam Tip (Logs): When solving log equations, your first step should always be to apply the power rule to get rid of any numbers in front of the log terms.
වියාචනය (Disclaimer)
Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.
කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්රී ලංකා අධ්යාපන අමාත්යාංශයේ, අධ්යාපන ප්රකාශන දෙපාර්තමේන්තුව විසින් ප්රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.
ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්රකාශනයි.
