Revisions
Grade 10
Grade 11
Chords of a Circle
Grade
10
Term
3
Define a chord of a circle. What is the longest chord of a circle called?
State the theorem concerning the line segment drawn from the centre of a circle to the midpoint of a chord.
State the converse of the theorem in question 2.
A chord AB of a circle with centre O has a length of 8 cm. The midpoint of AB is C. If the radius of the circle is 5 cm, find the length of OC.
A perpendicular is drawn from the centre O of a circle to a chord PQ, meeting it at R. If the radius is 10 cm and OR = 8 cm, find the length of the chord PQ.
PQ and RS are two parallel chords of a circle, on opposite sides of the centre O. The radius is 10 cm, PQ = 16 cm, and RS = 12 cm. Find the distance between the two chords.
AB and CD are two equal chords of a circle with centre O. The midpoints of the chords are X and Y. Prove that OX = OY.
In a circle with centre O, R is the midpoint of chord PQ. If OP^R=30∘, prove that △ORQ is a right-angled isosceles triangle.
AB and BC are two equal chords of a circle with centre O. Perpendiculars from O meet the chords at X and Y respectively. If XO^Y=140∘, find the magnitude of AB^C.
The vertices A, B, and C of △ABC lie on a circle with centre O. The midpoint of BC is X. If O lies on AX, what type of triangle is ABC? Prove your answer.
PQ and RS are two equal chords of a circle with centre O. The midpoints of PQ and RS are X and Y respectively. Prove that XO^Y=PS^R.
A chord of length 24 cm is 5 cm away from the centre of a circle. Another chord is 12 cm away from the centre. Find its length.
The perpendicular from the centre O of a circle to a chord AB intersects the chord at X and meets the circle at Y. If XY = 3 cm and AB = 8 cm, find the radius of the circle.
The vertices A, B, and C of an equilateral triangle lie on a circle with centre O. Perpendiculars are drawn from O to AB, AC, and BC, meeting them at X, Y, and Z respectively. Prove that OX = OY = OZ.
PQ and PR are two chords of a circle with centre O. Perpendiculars from O meet PQ and PR at X and OY respectively. If XR and QY are straight lines, prove that PQ=PR.
වියාචනය (Disclaimer)
Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.
කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්රී ලංකා අධ්යාපන අමාත්යාංශයේ, අධ්යාපන ප්රකාශන දෙපාර්තමේන්තුව විසින් ප්රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.
ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්රකාශනයි.
