Revisions
Grade 10
Grade 11
Congruence of Triangles
Grade
10
Term
1
What is meant when two plane figures are described as being "congruent"?
Name the four cases under which two triangles can be proven to be congruent.
In △ABC and △PQR, if AB=PQ, BC=QR, and AB^C=PQ^R, under which case are the two triangles congruent?
In △ABC and △PQR, if AB^C=PQ^R, AC^B=PR^Q, and AC=PR, under which case are the two triangles congruent?
In △ABC and △PQR, if AB=PQ, BC=QR, and AC=PR, under which case are the two triangles congruent?
In the right-angled triangles △ABC and △PQR, where B^ and Q^ are right angles, if hypotenuse AC=PR and side AB=PQ, under which case are the two triangles congruent?
In quadrilateral ABCD, AB=AD and the diagonal AC bisects the angle BA^D. Prove that △ABC≡△ADC.
In △ABC, the angle bisector of BA^C meets BC at X. If AB^X=AC^X, prove that △ABX≡△ACX.
The opposite sides of the quadrilateral PQRS are equal in length (PQ=RS, PS=QR). Prove that △PSR≡△RQP.
A circle has its centre at O. A perpendicular line from O meets a chord AB at point X. Prove that △OXA≡△OXB.
If △ABC≡△PQR, what can be concluded about the lengths of the corresponding sides BC and QR, and the magnitudes of the corresponding angles BA^C and QP^R?
In quadrilateral ABCD, diagonals AC and BD bisect each other at O. Prove that the opposite sides AD and BC are parallel to each other.
In △PQR, perpendiculars QY and RX are drawn from Q and R to the opposite sides such that QY=RX. Prove that △XQR≡△YRQ.
The equilateral triangles BCF and DCE are drawn on the sides BC and DC of a square ABCD, lying outside the square. Prove that △EDA≡△ABF.
In a parallelogram ABCD, the mid-point of side DC is P. If AD and BP produced meet at E, prove that AB = BQ, where Q is the intersection of DE produced and AB produced.
වියාචනය (Disclaimer)
Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.
කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්රී ලංකා අධ්යාපන අමාත්යාංශයේ, අධ්යාපන ප්රකාශන දෙපාර්තමේන්තුව විසින් ප්රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.
ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්රකාශනයි.
