top of page

Revisions

Graphs

Grade

11

Term

2

Introduction: This is a major question in Paper II, often worth 10 marks. Accuracy is key. Use a sharp pencil and be careful when plotting points. Most marks are for interpreting the graph correctly, so practice answering all the standard question types.


The "S Pass" Foundation (නියත S එකකට)

  • Prompt 1 (Plotting): Given the function y=x2−4x and the value x=3, calculate the corresponding y-value.

  • Prompt 2 (Identify): From a drawn graph of a parabola, identify the coordinates of the turning point (vertex).

  • Prompt 3 (Identify): Is the turning point a maximum or a minimum for the function y=−2x2+...? Why?

  • Prompt 4 (Method): How do you find the roots of the equation x2−4x=0 from the graph of the function y=x2−4x?

  • Prompt 5 (Method): How do you solve the simultaneous equations y=2x+1 and y=−x+4 graphically?


Climbing to a "C" (C එකට පාර)

  • Prompt 1 (Task): Draw the graph of the function y=x2−6x+5 for the range of values 0≤x≤6.

  • Prompt 2 (Analysis): Using the graph from the previous prompt, find:

    • The minimum value of the function.

    • The equation of the axis of symmetry.

    • The roots of the equation x2−6x+5=0.

  • Prompt 3 (Analysis): Find the range of values of x for which the function y=x2−6x+5 is negative.

  • Prompt 4 (Analysis): Find the range of values of x for which the function y=x2−6x+5 is decreasing.

  • Prompt 5 (Sketch): Without drawing an accurate graph, sketch the graph of y=−(x−2)2+3, marking the coordinates of the turning point and the y-intercept.


Aiming for a "B" (B ඉලක්කය)

  • Prompt 1 (Task): Draw the graph of y=3+2x−x2 for −2≤x≤4.

  • Prompt 2 (Analysis): Using the graph, find the range of values of x for which y is positive and increasing.

  • Prompt 3 (Analysis): For the function y=3+2x−x2, find the values of x when y = 1.

  • Prompt 4 (Deduction): Using the graph of y=x2−6x+5, find the roots of the equation x2−6x+8=0. (Hint: Draw the line y=3).

  • Prompt 5 (Word Problem): The height (h metres) of a ball thrown upwards after t seconds is given by h=20t−5t2. Draw a graph for 0≤t≤4 and find the maximum height reached by the ball.


Securing the "A" Distinction (A සාමාර්ථය තහවුරු කරගන්න)

  • Prompt 1 (Deduction): Use your graph of y=x2−6x+5 to find the roots of 2x2−12x+10=0. Explain your method.

  • Prompt 2 (Synthesis): Given the function y=(x−a)2+b, the coordinates of its turning point are (3, -4). Write down the function. Then, find the roots of the equation (x−a)2+b=0.

  • Prompt 3 (Analysis): The graph of a quadratic function intersects the x-axis at (-2, 0) and (4, 0) and passes through the point (1, -9). Find the equation of the function.

  • Prompt 4 (Challenge): Describe the transformation that maps the graph of y=x2 onto the graph of y=x2+4x+1.

  • Prompt 5 (Word Problem): A rectangular plot has a perimeter of 40m. If its length is x, show that its area A is given by A=x(20−x). Draw the graph of this function and find the length that gives the maximum possible area.

වියාචනය (Disclaimer)

Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්‍යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.

කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්‍යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්‍රී ලංකා අධ්‍යාපන අමාත්‍යාංශයේ, අධ්‍යාපන ප්‍රකාශන දෙපාර්තමේන්තුව විසින් ප්‍රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.

ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්‍රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්‍රකාශනයි.

bottom of page