Revisions
Grade 10
Grade 11
Indices and Logarithms I
Grade
11
Term
1
Introduction: This is a core topic in algebra. Mastering the laws of indices and logarithms is essential for solving many types of equations. Expect direct questions on solving for x, and be ready to apply these rules in other topics like Geometric Progressions.
The "S Pass" Foundation (නියත S එකකට)
Prompt 1 (Recall): Write down the three main laws of indices (for multiplication, division, and power of a power).
Prompt 2 (Convert): Write 3x2 in index form.
Prompt 3 (Calculate): Find the value of 6432.
Prompt 4 (Solve): Solve the equation 3x=81.
Prompt 5 (Recall): Write down the three main laws of logarithms (for addition, subtraction, and powers).
Climbing to a "C" (C එකට පාර)
Prompt 1 (Calculate): Find the value of (1258)−32.
Prompt 2 (Solve): Solve the equation 4x−1=32.
Prompt 3 (Simplify): Simplify: 2log105+log104.
Prompt 4 (Solve): Solve for x: log240−log25=log2x.
Prompt 5 (Simplify): Simplify and express with positive indices: (a−3)2÷a−2.
Aiming for a "B" (B ඉලක්කය)
Prompt 1 (Solve): Solve the equation 92x−1×271−x=1.
Prompt 2 (Solve): Solve for x: 2loga3+loga4=logax+loga6.
Prompt 3 (Problem Solve): If 3x=p and 3y=q, express log3(pq2) in terms of x and y.
Prompt 4 (Justify): Without using a calculator, prove that log550+log52−log54=2.
Prompt 5 (Application): The third term of a geometric progression is a5 and the fifth term is a9. If the first term is a, find the common ratio in terms of a.
Securing the "A" Distinction (A සාමාර්ථය තහවුරු කරගන්න)
Prompt 1 (Challenge Solve): Solve for x: (4x)−5(2x)+4=0. (Hint: Let y=2x).
Prompt 2 (Proof): Show that lg4+lg6lg8+lg9=lg6. Is this statement correct? Justify your answer. (This is a trick question to test understanding of laws).
Prompt 3 (Derive): If logxa=2 and logya=3, find the value of logxya.
Prompt 4 (Complex Solve): Solve for x: 32x+1−28(3x)+9=0.
Prompt 5 (Synthesis): If lg(3x+y)=21(lgx+lgy), show that yx+xy=7.
වියාචනය (Disclaimer)
Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.
කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්රී ලංකා අධ්යාපන අමාත්යාංශයේ, අධ්යාපන ප්රකාශන දෙපාර්තමේන්තුව විසින් ප්රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.
ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්රකාශනයි.
