top of page

Revisions

Trigonometry

Grade

11

Term

3

Introduction: A major topic, especially for Paper II. You must know SOH-CAH-TOA perfectly. The challenge is usually in drawing the correct diagram for word problems involving angles of elevation, depression, and bearings.


The "S Pass" Foundation (නියත S එකකට)


  • Prompt 1 (Define): For a given angle θ in a right-angled triangle, define the Sine, Cosine, and Tangent ratios (SOH-CAH-TOA).

  • Prompt 2 (Calculate): In a right-angled triangle, the side opposite to angle θ is 8 cm and the hypotenuse is 17 cm. Find sinθ and cosθ.

  • Prompt 3 (Special Angles): Without a calculator or table, what is the exact value of tan60∘ and sin30∘?

  • Prompt 4 (Use Tables): Find the value of cos54∘30′ using the trigonometric tables.

  • Prompt 5 (Use Tables): Find the angle θ if tanθ=1.455.

Climbing to a "C" (C එකට පාර)


  • Prompt 1 (Problem Solve): In right-angled triangle ABC, B^=90∘, AC^B=30∘ and AC = 12 cm. Find the lengths of AB and BC.

  • Prompt 2 (Problem Solve): From a point 50 m away from the foot of a vertical tower, the angle of elevation to the top of the tower is 60°. Find the height of the tower.

  • Prompt 3 (Problem Solve): From the top of a lighthouse 80 m high, the angle of depression of a ship at sea is 25°. How far is the ship from the foot of the lighthouse?

  • Prompt 4 (Problem Solve): A ship travels 100 km on a bearing of 060°. How far North and how far East has it travelled from its starting point?

  • Prompt 5 (Identity): If sinθ=53​, construct a right-angled triangle and find the values of cosθ and tanθ.


Aiming for a "B" (B ඉලක්කය)


  • Prompt 1 (Two Angles): A person standing on a river bank observes a tree on the opposite bank at an angle of elevation of 60°. When he moves back 40 m, the angle of elevation becomes 30°. Find the height of the tree and the width of the river.

  • Prompt 2 (Bearings): A boat sails 8 km from port A on a bearing of 040° to port B. It then sails 6 km from port B on a bearing of 130° to port C. Find the distance and bearing of C from A.

  • Prompt 3 (Rider): In triangle ABC, AD is perpendicular to BC. If tanB=BDAD​ and tanC=CDAD​, show that BC=AD(tanB1​+tanC1​).

  • Prompt 4 (Problem Solve): From a window 15 m high, the angle of elevation of the top of a flagpole is 30° and the angle of depression of its foot is 45°. Find the height of the flagpole.

  • Prompt 5 (Synthesis): In parallelogram ABCD, AB = 12 cm, AD = 8 cm, and angle DA^B=60∘. Find the length of the diagonal BD.


Securing the "A" Distinction (A සාමාර්ථය තහවුරු කරගන්න)


  • Prompt 1 (Proof): Prove that for any angle θ, sin2θ+cos2θ=1.

  • Prompt 2 (Challenge): Two ships leave a port at the same time. One travels at 20 km/h on a bearing of 045° and the other travels at 15 km/h on a bearing of 315°. How far apart are they after 2 hours?

  • Prompt 3 (3D Problem): A vertical pole stands at a corner of a rectangular field. The angles of elevation of the top of the pole from the two nearest corners are 45° and 60°. If the dimensions of the field are 50 m x 40 m, find the height of the pole.

  • Prompt 4 (Derive): In any triangle ABC, prove the Sine Rule: sinAa​=sinBb​=sinCc​.

  • Prompt 5 (Derive): In any triangle ABC, prove the Cosine Rule: a2=b2+c2−2bccosA.

වියාචනය (Disclaimer)

Idasara Academy ඉගෙනුම් සම්පත් නිර්මාණය කර ඇත්තේ සිසුන්ට මගපෙන්වීම, පුහුණුව සහ අධ්‍යයන උපායමාර්ග ලබාදී සහයෝගය දැක්වීමටය.

කෙසේ වෙතත්, සියලුම විභාග සහ නිල අවශ්‍යතා සඳහා, සිසුන් අනිවාර්යයෙන්ම ශ්‍රී ලංකා අධ්‍යාපන අමාත්‍යාංශයේ, අධ්‍යාපන ප්‍රකාශන දෙපාර්තමේන්තුව විසින් ප්‍රකාශයට පත් කරන ලද නිල පෙළපොත් සහ සම්පත් පරිශීලනය කළ යුතුය.

ජාතික විභාග සඳහා අන්තර්ගතයේ නිල බලය ලත් මූලාශ්‍රය වනුයේ රජය විසින් නිකුත් කරනු ලබන මෙම ප්‍රකාශනයි.

bottom of page